Table of Contents

Introduction .. 1
 General Description .. 2
 KAP 140 Single Axis Autopilot System 2
 KAP 140 Two Axis Autopilot System 2
 KAP 140 Two Axis/Altitude Preselect Autopilot System 2
 System Integration .. 4

Power Application and Preflight Tests 8

KAP 140 Single Axis Operation 9
 System Operating Modes .. 12
 Wing Leveler (ROL) Mode .. 12
 Heading Select (HDG) Mode 13
 Navigation (NAV) Mode Using a DG from HDG Mode
 (45° Intercept) ... 14
 Navigation (NAV) Mode Using a DG from ROL Mode
 (All Angle Intercept) .. 16
 Approach (APR) Mode Using a DG from HDG Mode
 (45° Intercept) ... 20
 Approach (APR) Mode Using a DG from ROL Mode
 (All Angle Intercept) .. 22
 Approach (APR) Mode Using an HSI 24
 Back Course (REV) Mode Using a DG from HDG Mode
 (45° Intercept) ... 26
 Back Course (REV) Mode Using a DG from ROL Mode
 (All Angle Intercept) .. 28
 Back Course (REV) Mode Using an HSI 30

Operations With The KAP 140 32
 Takeoff And Climb To Assigned Altitude 32
 GPS Capture Using DG ... 34
 GPS Capture Using HSI .. 36
 Outbound On Front Course For Procedure Turn To LOC Approach
 Using DG ... 38
 Outbound On Front Course For Procedure Turn To LOC Approach
 Using HSI ... 40
 Front Course LOC Approach Using DG 42
 Front Course LOC Approach Using HSI 44
 Outbound on GPS Approach Using DG 46
 Outbound on GPS Approach Using HSI 48
 Inbound on GPS Approach Using DG 50
 Inbound on GPS Approach Using HSI 52

KAP 140 Two Axis Operation 55
 System Operating Modes .. 57
 Vertical Speed (VS) Mode ... 58
 Altitude Hold (ALT) Mode ... 59

Operations With The KAP 140 60
 Takeoff And Climb To Assigned Altitude 60
 GPS Capture Using DG ... 62
Table of Contents

- GPS Capture Using HSI ... 64
- Outbound On Front Course For Procedure Turn To ILS Approach Using DG ... 66
- Outbound On Front Course For Procedure Turn To ILS Approach Using HSI ... 68
- Front Course ILS Approach Using DG ... 70
- Front Course ILS Approach Using HSI ... 72
- Outbound on GPS Approach Using DG ... 74
- Outbound on GPS Approach Using HSI ... 76
- Inbound on GPS Approach Using DG ... 78
- Inbound on GPS Approach Using HSI ... 80
- **KAP 140 Two Axis with Altitude Preselect Operation** ... 83
 - System Operating Modes ... 86
 - Vertical Speed (VS) Mode ... 86
 - Altitude Hold (ALT) Mode ... 87
 - Altitude Alerting and Preselect ... 88
 - Altitude Alerter ... 88
 - Altimeter Setting ... 88
 - Altitude Preselect ... 89
 - Voice Messaging ... 89
- Operations With The KAP 140 ... 90
 - Takeoff And Climb To Assigned Altitude ... 90
 - GPS Capture Using DG ... 92
 - GPS Capture Using HSI ... 94
- Outbound On Front Course For Procedure Turn To ILS Approach Using DG ... 96
- Outbound On Front Course For Procedure Turn To ILS Approach Using HSI ... 98
- Front Course ILS Approach Using DG ... 100
- Front Course ILS Approach Using HSI ... 102
- Outbound on GPS Approach Using DG ... 104
- Outbound on GPS Approach Using HSI ... 106
- Inbound on GPS Approach Using DG ... 108
- Inbound on GPS Approach Using HSI ... 110
- **KCS 55A Compass System** ... 113
 - KI-525A Indicator ... 114
 - Description of Indicator and Display Functions ... 114
 - Slaving Meter (KA 51B) ... 116
 - KMT-112 Magnetic Slaving Transmitter ... 117
 - KG-192A Directional Gyro ... 117
 - Abnormal Circumstances ... 119
 - Flight Procedures with the KCS-55A ... 120
- Abnormal Procedures ... 127
 - Autopilot Malfunction ... 127
Introduction

The KAP 140 Autopilot System is a rate based digital autopilot system offering smooth performance and enhanced features found only in more expensive autopilots. The first of its type developed by Honeywell, this system brings digital technology and reliability into the light aircraft cockpit.

It is also significant that the KAP 140 series autopilots have been designed from their inception to interface with the Silver Crown package of products. Consider the advantage of having your avionics working together as an integrated system rather than as a group of components built by several manufacturers.

Your new KAP 140 roll axis features include wing leveler, heading select, and VOR/LOC intercept and tracking. The KAP 140 can also be coupled to GPS and RNAV receivers as well. Roll rate information is derived from the turn coordinator. Pitch axis features include vertical speed, glideslope and altitude hold along with the optional altitude preselect. Pitch information is derived from a pressure sensor and accelerometer. The KAP 140 Autopilot System operates independent of the aircraft’s artificial horizon. Therefore, the autopilot retains roll stabilization and all vertical modes in the event of vacuum system failure.

Internal monitors keep constant track of the KAP 140’s status and provide for automatic shutdown of the autopilot or trim system in the event of a malfunction. In addition to reliability, the KAP 140 is designed to be easily maintained in the field. Qualified Honeywell Service Centers are located around the world to provide assistance whenever necessary.

To fully realize the capability of your new panel mount digital autopilot system, you must understand the performance capabilities and basic operational requirements of the system. This pilot’s guide provides information to aid in this and is divided up into six sections. The first section provides general familiarization of each autopilot system including the associated panel mounted displays. The second section describes the KAP 140 Single Axis Autopilot System. The third section describes the KAP 140 Two Axis Autopilot System. The fourth section describes the KAP 140 Two Axis/Altitude Preselect Autopilot System. The fifth section describes the optional KCS 55A slaved compass system. The Sixth section describes abnormal procedures.
Introduction

General Description

KAP 140-Single-Axis Autopilot System

The KAP 140 Single-Axis system is an entry level digital panel-mount autopilot, offering lateral modes only with an electric trim option.

KAP 140 Two-Axis/Altitude Preselect Autopilot System

The KAP 140 Two-Axis system provides both lateral and vertical modes with altitude preselect.

KAP 140 Two Axis Autopilot System

The KAP 140 Two Axis system provides both lateral and vertical modes.
KAP 140 System Capabilities

<table>
<thead>
<tr>
<th></th>
<th>KAP 140 Two Axis Alt. Preselect</th>
<th>KAP-140 Two-Axis</th>
<th>KAP-140 Single-Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>DG</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Turn Coordinator</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Automatic Electric Elevator Trim</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Manual Electric Trim</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>FUNCTIONS/MODES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT Hold (ALT)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ALT Preselect/ALERT</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heading Select (HDG)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NAV (VOR/RNAV/GPS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Approach (APR)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Glideslope (GS)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Back Course (REV)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Control Wheel Steering (CWS)</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Vertical Speed Hld</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Auto Capture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto Track</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>All Angle Intercept</td>
<td>Standard (with DG or optional HSI)</td>
<td>Standard (with DG or optional HSI)</td>
<td>Standard (with DG or optional HSI)</td>
</tr>
<tr>
<td>Auto 45-degree Intercept</td>
<td>Standard (with DG only)</td>
<td>Standard (with DG only)</td>
<td>Standard (with DG only)</td>
</tr>
<tr>
<td>TEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual and Auto Trim Monitor</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
</tr>
<tr>
<td>Acceleration Monitor</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
System Integration

The individual system diagrams on pages 5, 6, and 7 show the components and their relationship in typical KAP 140 Single Axis, KAP 140 Two Axis, and KAP 140 Two Axis/Altitude Preselect systems. The actual components on individual systems may vary slightly in order to optimize certification and installation requirements.

Each system has a number of inputs: sensor outputs are shown in red; combination inputs are shown in blue; display outputs are shown in orange; and aircraft control shown in green. The systems diagrams reflect that the KAP 140 systems control both pitch and roll axes of the aircraft.
Introduction

KC 140 Two Axis with Altitude Preselect Computer/Controller/Annunciator contains computer functions, mode control buttons, and annunciations in a single unit. Also contains static pressure sensor and accelerometer.

KS 271C Roll Servo
KS 270C Pitch Servo
KS 272C Pitch Trim Servo

Autopilot Disconnect/Trim Interrupt
Control WheelSteering (optional)
Manual Electrical Trim

KAP 140 Two Axis/Altitude Preselect System Diagram
Power Application and Preflight Tests

A preflight test is performed upon power application to the computer. This test is a sequence of internal checks that validate proper system operation prior to allowing autopilot engagement. The preflight test (PFT) sequence is indicated by “PFT” with an increasing number for the sequence steps. Successful completion of self test is identified by all display segments being illuminated (Display Test) and the disconnect tone sounding.

For two-axis units only:

NOTE: Following the preflight test, the red P warning on the face of the autopilot may illuminate indicating that the pitch axis cannot be engaged. This condition should be temporary, lasting no more than 30 seconds. The P will extinguish and normal operation will be available.

NOTE: The red P warning may illuminate when the autopilot is not engaged. This can occur when autopilot G limits have been exceeded during turbulence or aircraft maneuvering. Autopilot engagement is locked out during red P illumination.

If power to the autopilot is cycled in flight (i.e. through the autopilot circuit breaker for instance) it is possible that a 5 minute delay may be necessary prior to autopilot engagement to allow the pitch axis accelerometer circuit to stabilize. Engagement prior to stabilization may result in mildly erratic pitch axis behavior.
Single Axis Operation

System Operating Modes

Wing Leveler (ROL) Mode

In the roll mode, the autopilot maintains wings level flight.

1. Engage autopilot - Press AP. For software version 03/01 and later, the AP button must be pressed and held for 0.25 seconds to engage the autopilot.

NOTE: The KAP 140 engages into ROL mode as a default.
Heading Select (HDG) Mode

In the heading mode, the autopilot will fly a selected heading. The following steps should be taken to operate in the heading mode:

1. Move the heading “bug” to the desired heading on the DG or HSI using the Heading Select knob.

2. Engage autopilot - Press AP. For software version 03/01 and later, the AP button must be pressed and held for 0.25 seconds to engage the autopilot.

3. Depress the HDG button on the KAP 140 to engage the heading select mode. The autopilot will turn the aircraft in the shortest direction to intercept and fly the heading.

4. If you move the heading “bug” again while the heading select mode is engaged, the autopilot will immediately turn the aircraft in the direction of the newly selected heading.

5. Press HDG button again and the autopilot will return to the ROL mode.
Navigation (NAV) Mode Using a DG from HDG Mode (45° Intercept)

In the navigation (NAV) mode, the autopilot intercepts and tracks VOR/RNAV and GPS courses.

To arm NAV mode (with the KAP 140 currently in the HDG mode):

1. Select the desired frequency for VOR or RNAV. For GPS, verify the desired waypoint or destination.

2. OBS Knob - SELECT desired course.

3. NAV Mode Selector Button - PRESS. Note NAV ARM annunci-ated.

NOTE: When NAV is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the OBS course. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
4. Heading Selector Knob - ROTATE BUG to agree with OBS course.

Note Instruments: CDI needle to left. Intercept heading 45° to the left of selected (heading bug) course.

5. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate NAV ARM; when the computed capture point is reached the ARM annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the HDG mode will disengage upon selecting NAV mode; the NAV annunciator will illuminate and the capture/track sequence will automatically begin.
Navigation (NAV) Mode Using a DG from ROL Mode (All Angle Intercept)

In the navigation (NAV) mode, the autopilot intercepts and tracks VOR/RNAV and GPS courses.

To arm NAV mode (with the KAP 140 currently in the ROL mode):

1. Maneuver the aircraft to the desired intercept angle prior to selecting ROL mode.
2. Select the desired frequency for VOR or RNAV. For GPS, verify the desired waypoint or destination.
3. OBS Knob - SELECT desired course.
4. NAV Mode Selector Button - PRESS. Note NAV ARM annunci- ated.

NOTE: When NAV is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the OBS course. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
5. Heading Selector Knob - ROTATE BUG to agree with OBS course.

Note Instruments: CDI needle to left. Intercept heading 30° to the left of selected (heading bug) course.

6. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate NAV ARM; when the computed capture point is reached the ARM annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the ROL mode will disengage upon selecting NAV mode; the NAV annunciator will illuminate and the capture/track sequence will automatically begin.

Note: Intercept angles greater than 45° can result in course overshoot when close to the station. Therefore, intercept angles greater than 45° are not recommended.
Approach (APR) Mode Using a DG from HDG Mode (45° Intercept)

The Approach (APR) mode allows the autopilot to intercept and track LOC, VOR/RNAV and GPS courses.

To arm APR mode (with the KAP 140 currently in the HDG mode):

1. Select the desired frequency for LOC, VOR or RNAV. For GPS, verify the desired approach.
2. OBS Knob - SELECT desired approach course. (For a localizer, set it to serve as a memory aid.)
3. APR Mode Selector Button - PRESS. Note APR ARM annunciator.

NOTE: When APR is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the desired approach course. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
4. Heading Selector Knob - ROTATE BUG to agree with desired approach course.

Note Instruments: CDI needle to left. Intercept heading 45° to the left of selected (heading bug) course.

5. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate APR ARM; when the computed capture point is reached the ARM annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the HDG mode will disengage upon selecting APR mode; the APR annunciator will illuminate and the capture/track sequence will automatically begin.
Approach (APR) Mode Using a DG from ROL Mode (All Angle Intercept)

The Approach (APR) mode allows the autopilot to intercept and track LOC, VOR/RNAV and GPS courses.

To arm APR mode (with the KAP 140 currently in the ROL mode):

1. Maneuver the aircraft to the desired intercept angle prior to selecting ROL mode.

2. Select the desired frequency for LOC, VOR or RNAV. For GPS, verify the desired approach.

3. OBS Knob - SELECT desired approach course. (For a localizer, set it to serve as a memory aid.)

4. APR Mode Selector Button - PRESS. Note APR ARM annunciated.

NOTE: When APR is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the desired approach course. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
5. Heading Selector Knob - ROTATE BUG to agree with desired approach course.

Note Instruments: CDI needle to left. Intercept heading 30° to the left of selected (heading bug) course.

6. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate **APR ARM**; when the computed capture point is reached the **ARM** annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the **ROL** mode will disengage upon selecting **APR** mode; the **APR** annunciator will illuminate and the capture/track sequence will automatically begin.

Note: Intercept angles greater than 45° can result in course overshoot when close to the station. Therefore, intercept angles greater than 45° are not recommended.
Back Course (REV) Mode Using a DG from HDG Mode (45° Intercept)

The Back Course (REV) mode allows the autopilot to intercept and track a localizer back course.

To arm REV mode (with the KAP 140 currently in the HDG mode):

1. Select the desired frequency for LOC.
2. OBS Knob - SELECT front course inbound heading.
3. REV Mode Selector Button - PRESS. Note REV ARM annunciated.

NOTE: When REV is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the front course inbound heading. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
4. Heading Selector Knob - ROTATE BUG to agree with the FRONT COURSE inbound heading.

Note Instruments: CDI needle to the right. Intercept heading 45° to the left of the back course.

5. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate REV ARM; when the computed capture point is reached the ARM annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the HDG mode will disengage upon selecting REV mode; the REV annunciator will illuminate and the capture/track sequence will automatically begin.
Back Course (REV) Mode Using a DG from ROL Mode

(All Angle Intercept)

The Back Course (REV) mode allows the autopilot to intercept and track a localizer back course.

To arm REV mode (with the KAP 140 currently in the ROL mode):

1. Maneuver the aircraft to the desired intercept angle prior to selecting ROL mode.
2. Select the desired frequency for LOC.
3. OBS Knob - SELECT front course inbound heading.
4. REV Mode Selector Button - PRESS. Note REV ARM annunci- ated.

NOTE: When REV is selected, the autopilot will flash HDG for 5 seconds to remind the pilot to reset the HDG bug to the front course inbound heading. Check the heading displayed on the DG against the magnetic compass and reset if necessary.
5. Heading Selector Knob - ROTATE BUG to agree with the FRONT COURSE inbound heading.

![Image of heading selector knob](image)

Note Instruments: CDI needle to the right. Intercept heading 30° to the left of the back course.

6. If the Course Deviation Bar is greater than 2 to 3 dots: the autopilot will annunciate **REV ARM**; when the computed capture point is reached the **ARM** annunciator will go out and the selected course will be automatically captured and tracked. If the D-Bar is less than 2 to 3 dots: the **HDG** mode will disengage upon selecting **REV** mode; the **REV** annunciator will illuminate and the capture/track sequence will automatically begin.

![Image of course deviation bar](image)

Note: Intercept angles greater than 45° can result in course overshoot when close to the station. Therefore, intercept angles greater than 45° are not recommended.
KAP 140 Two Axis with Altitude Preselect Operation

The KAP 140 is a digital, panel-mounted autopilot system for light aircraft.

1. PITCH AXIS, (P) ANNUNCIATOR - When illuminated, indicates failure of the pitch axis and will disengage the autopilot when the failure occurs and not allow engagement of the pitch axis.

2. AUTOPILOT ENGAGE/DISENGAGE (AP) BUTTON - When pushed, engages autopilot if all logic conditions are met. The autopilot will engage in the basic roll (ROL) mode which functions as a wing leveler and in the vertical speed (VS) hold mode. The commanded vertical speed is be displayed in the upper right corner of autopilot display area for three seconds after engagement or if either the UP or DN button is pressed. The captured VS will be the vertical speed present at the moment of AP button press. When pressed again, will disengage the autopilot. For software version 03/01 and later, the AP button must be pressed and held for 0.25 seconds to engage the autopilot.

3. ROLL AXIS (R) ANNUNCIATOR - When illuminated, indicates failure of the roll axis and will disengage the autopilot and not allow engagement.

4. HEADING (HDG) MODE SELECTOR BUTTON - When pushed, will arm the Heading mode, which commands the airplane to turn to and maintain the heading selected by the heading bug on either the DG or HSI. A new heading may be selected at any time and will result in the airplane turning to the new heading. Button can also be used to toggle between HDG and ROL modes. This button will engage the autopilot in units with software prior to software version 03/01.
Two Axis/Altitude Preselect Operations

5. NAVIGATION (NAV) MODE SELECTOR BUTTON - When pushed, will arm the navigation mode. The mode provides automatic beam capture and tracking of VOR, LOC or GPS as selected for presentation on the HSI or CDI. NAV mode is recommended for enroute navigation tracking. NAV mode may also be used for front course LOC tracking when GS tracking is not desired.

6. APPROACH (APR) MODE SELECTOR BUTTON - When pushed, will arm the Approach mode. This mode provides automatic beam capture and tracking of VOR, GPS, LOC, and Glideslope (GS) on an ILS, as selected for presentation on the HSI or CDI. APR mode is recommended for instrument approaches.

7. BACK COURSE APPROACH (REV) MODE SELECTOR BUTTON - When pushed, will arm the Back Course approach mode. This mode functions similarly to the approach mode except that the autopilot response to LOC signals is reversed, and GS is disabled.

8. ALTITUDE HOLD (ALT) MODE SELECT BUTTON - When pushed, will select the Altitude Hold mode. This mode provides tracking of the reference altitude. The reference altitude is the altitude at the moment the ALT button is pressed. If the ALT button is pressed with an established VS rate present, there will be altitude overshoot (approximately 10% of the VS rate), with the airplane returned positively to the reference altitude. This button will engage the autopilot in units with software prior to software version 03/01.

9. VERTICAL TRIM (UP/DN) BUTTONS - The action of these buttons is dependent upon the vertical mode present when pressed. If VS mode is active, the initial button stroke will bring up the commanded vertical speed in the display. Subsequent immediate button strokes will increment the vertical speed commanded either up or down at the rate of 100 ft/min per button press, or at the rate of approximately 300 ft/min per second if held continuously. If ALT mode is active, incremental button strokes will move the altitude hold reference altitude either up or down at 20 feet per press, or if held continuously will command the airplane up or down at the rate of 500 ft/min, synchronizing the altitude hold reference to the actual airplane altitude upon button release.

(Note that the altitude hold reference is not displayed. The display will continue to show the altitude alerter reference.)

10. ROTARY KNOBS - Used to set the altitude alerter reference altitude; or may be used immediately after pressing the BARO button, to adjust the autopilot baro setting to match that of the airplane’s altimeter when manual adjustment is required. (In some installations the baro setting is automatically synced to that of the altimeter.)

11. BARO SET (BARO) BUTTON - When pushed and released, will change the display from the altitude alerter selected altitude to the baro setting display (either IN HG or HPA) for 3 seconds. If pushed and held for 2 seconds, will change the baro setting display from IN HG to HPA or
vice versa. Once the baro setting display is visible the rotary knobs may be used to manually adjust the baro setting if automatic baro correction is not available.

12. ALTITUDE ARM (ARM) BUTTON - When pushed will toggle altitude arming on or off. When ALT ARM is annunciated, the autopilot will capture the altitude alerter displayed altitude (provided the aircraft is climbing or descending in VS to the displayed altitude). When the autopilot is engaged, ALT arming is automatic upon altitude alerter altitude selection via the rotary knobs. Note that the alerter functions are independent of the arming process thus providing full time alerting, even when the autopilot is disengaged.

13. ALTITUDE ALERTER/VERTICAL SPEED/BARO SETTING DISPLAY - Normally displays the altitude alerter selected altitude. If the UP or DN button is pushed while in VS hold, the display changes to the command reference for the VS mode in FPM for 3 seconds. If the BARO button is pushed, the display changes to the autopilot baro setting in either IN HG or HPA for 3 seconds.

NOTE: This display may be dashed for up to 3 minutes on start up if a blind encoder is installed which requires a warm up period.

14. ALTITUDE ALERT (ALERT) ANNUNCIATION - The ALERT annunciate is illuminated 1000 ft. prior to the selected altitude, extinguishes 200 ft. prior to the selected altitude and illuminates momentarily when the selected altitude is reached. Once the selected altitude is reached a flashing ALERT illumination signifies that the 200 ft. “safe band” has been exceeded and will remain illuminated until 1000 ft. from the selected altitude. Associated with the visual alerting is an aural alert (5 short tones) which occurs 1000 feet from the selected altitude upon approaching the altitude and 200 feet from the selected altitude on leaving the altitude.

15. PITCH TRIM (PT) ANNUNCIATION - A flashing PT with arrows indicates the direction of required pitch trim. A solid PT without an arrow head is an indication of a pitch trim fault. During manual electric trim operation (autopilot disengaged), detection of a stuck MET switch will be indicated by a solid PT. When the fault is corrected, the annunciation will extinguish.

16. PITCH MODE DISPLAY - Displays the active and armed pitch modes (VS, ALT, ARM, ALT and GS).

17. ROLL MODE DISPLAY - Displays the active and armed roll modes (ROL, HDG, NAV ARM, NAV, APR ARM, APR, REV ARM, REV, GS ARM). Also displayed will be flashing AP annunciation (5 seconds) at each autopilot disconnect accompanied by an aural tone (for 2 seconds).

18. AUTOPILOT ENGAGED (AP) ANNUNCIATION - Illuminates whenever the autopilot is engaged. Flashes during pilot initiated or automatic disengagement. Only applicable for software versions 03/01 or later.
Two Axis/Altitude Preselect Operations

System Operating Modes

The lateral modes (HDG, NAV, APR and REV) operate identically as depicted in the KAP 140 Single Axis Operating Modes section. Please refer to that section for text descriptions of lateral mode operation.

Vertical Speed (VS) Mode

The Vertical Speed (VS) mode allows variable speed climbs and descents. The ALT button toggles between altitude hold and vertical speed modes.

Note: The KAP 140 engages into VS mode as a default.

To operate in the VS mode (with autopilot currently disengaged):

1. AP button - Press. Note ROL, VS and current vertical speed is displayed. If no other modes are selected the autopilot will operate in the ROL and vertical speed hold modes. For software version 03/01 and later, the AP button must be pressed and held for 0.25 seconds to engage the autopilot.

2. UP or DN button - Select desired climb or descent rate. Each button stroke will increment the vertical speed commanded up or down by 100 ft/min per button press, or at the rate of approximately 300 ft/min per second if held continuously.

To initiate a climb or descent from Altitude Hold (ALT) mode:

1. ALT button - Press. Note ALT changes to VS and current vertical speed is displayed.

 2. UP or DN button - Select desired climb or descent rate. Each button stroke will increment the vertical speed commanded up or down by 100 ft/min per button press, or at the rate of approximately 300 ft/min per second if held continuously.

 Note: VS command value will be displayed during Control Wheel Steering (CWS) and for three seconds following VS engagement or pressing the UP or DN button. Both altitude and vertical speed utilize the same display area. Altitude is always displayed except during vertical speed selection. If the VS command value is not displayed, pressing (and releasing) the UP or DN button will not change the indicated altitude reference but will display the VS command value.

 Note: When operating at or near the best rate of climb airspeed, at climb power settings, and using vertical speed hold, it is easy to decelerate to an airspeed where continued decreases in airspeed will result in a reduced rate of climb. Continued operation in vertical speed mode can result in a stall.
Altitude Hold (ALT) Mode

The Altitude Hold (ALT) mode maintains the pressure altitude acquired upon selection of altitude hold. The ALT button toggles between altitude hold and vertical speed modes.

To operate in the ALT mode (with autopilot currently in the Vertical Speed mode):

1. **ALT** button - Press. Note ALT is annunciated and autopilot maneuvers to maintain pressure altitude acquired at button selection.

2. **UP** or **DN** button - Select to change altitude. Incremented button strokes will move the reference altitude by 20 feet per press, or if held continuously will command a 500 ft/min altitude change, acquiring a new reference altitude upon button release.

Note: Incremented altitude changes should be limited to 500 ft. of change.
Altitude Alerting and Preselect

The Altitude Preselect function allows capturing of a desired altitude and transferring into altitude hold. Manual input of desired altitude is accomplished through the rotary knobs on the faceplate of the KAP 140.

The Altitude Alerting function will visually and aurally announce approaching, acquiring and deviation from a selected altitude.

Altimeter Setting

Installations with remote baro input

1. BARO setting - CHECK. depressing the BARO button will display the baro setting for three seconds.

Installations without remote baro input

Upon successful completion of pre-flight test, the baro display will flash.

1. BARO setting - Enter barometric setting using the rotary knobs OR if correct as displayed, press BARO.

Baro unit conversion

The barometric pressure display can toggled between IN HG and HPA as needed by the pilot.

1. BARO button - Press and hold for two seconds.

Altitude Alerter

The function of the Altitude Alerter is independent of the autopilot.

1. ALTITUDE SELECT knob - ROTATE until the desired altitude is displayed.

Note: The ALERT annunciation is illuminated 1000 ft. prior to the selected altitude, extinguishes 200 ft. prior to the selected altitude and illuminates momentarily when the selected altitude is reached. Once the selected altitude is reached, a flashing ALERT illumination signifies that the 200 ft. “safe band” has been exceeded and will remain illuminated until 1000 ft. from the selected altitude. Associated with the visual...
alerting is an aural alert (five short tones) which occurs 1000 ft. from the selected altitude upon approaching the altitude and 200 ft. from the selected altitude on leaving the altitude.

Altitude Preselect

1. **ALTITUDE SELECT** knob - ROTATE until desired altitude is displayed. ARM annunciation occurs automatically upon altitude selection when the autopilot is engaged.

2. Airplane - ESTABLISH desired vertical speed to intercept the selected altitude.

3. Upon altitude capture, ALT ARM will extinguish and ALT will be annunciated.

Note: Altitude preselect captures are not recommended on non-precision approaches to capture the MDA. Glideslope coupling will preclude an altitude capture on an ILS.

Voice Messaging

The following standard voice messages will be annunciated as conditions warrant:

1. **“TRIM IN MOTION, TRIM IN MOTION...”** - Pitch trim running for more than 5 seconds.

2. **“CHECK PITCH TRIM”** - An out of trim condition has existed for 15 seconds.
 a. Airplane Control Wheel - GRASP FIRMLY, press CWS and check for an out of pitch trim condition. Manually retrim as required.
 b. **CWS** button - RELEASE.
 c. **AUTOPilot OPERATION** - CONTINUE if satisfied that the out of trim condition was temporary. DISCONTINUE if evidence indicates a failure of the auto trim function.

The following optional voice messages will be annunciated if the system is configured for voice messaging:

1. **“ALTITUDE”** - 1000 feet before approaching selected altitude.

2. **“LEAVING ALTITUDE”** - 200 feet away, departing selected altitude.

3. **“AUTOPilot”** - Autopilot has disengaged, either through pilot action or automatically.
Two Axis/Altitude Preselect Operations

OPERATIONS WITH THE KAP 140

Takeoff And Climb To Assigned Altitude

1. The aircraft is well off the ground and established at a safe climb rate.
 The heading bug on the DG or HSI is turned to the desired heading of 080° (runway heading).
 By depressing the HDG button on the KAP 140, the autopilot engages into the heading and vertical speed modes and maintains the selected heading of 080° and current rate of climb.
 Note: Press and hold the AP button for 0.25 seconds to engage the autopilot (applicable only to software version 03/01 and later).

2. The heading bug on the DG or HSI is turned to the new desired heading of 010° and the aircraft begins to respond with an immediate left turn. A cruise altitude of 7,000 feet is entered using the rotary knobs. Altitude ARM annunciation occurs automatically upon selection.
3. The autopilot is responding to the heading select mode with a left bank. The climb rate has been decreased, using the DN button, in preparation for level out. The vertical speed value will be displayed upon selection of the DN button and will remain for three seconds.

4. Desired altitude has been reached and automatic altitude capture occurs. The autopilot has completed the turn and is now established on a 010° heading.
Two Axis/Altitude Preselect Operations

GPS Capture Using DG

1. Continuing on heading 010°, a GPS waypoint is established. A 30° intercept is desired.

2. The HDG button is depressed to select ROL mode which will allow an “all angle intercept”. GPS data is selected for the CDI and the OBS is set to 040°. The NAV button is depressed and NAV ARM is annunciated. ROL will change to HDG and flash for five seconds. ROL will then be redisplayed. While the HDG annunciation is flashing, move the heading bug to the desired course of 040°. The aircraft will remain wings level until the capture point.

* Description of GPS operation based on Bendix/King GPS receiver. Others may require different operation.
3. When the computed capture point is reached, the ROL annunciation changes to NAV and a right turn is initiated by the autopilot.

4. The turn is complete and the autopilot is tracking the GPS course.
Two Axis/Altitude Preselect Operations

Outbound On Front Course For Procedure Turn To ILS Approach Using DG

1. The aircraft is heading 270° with heading and altitude hold engaged. To intercept and fly the ILS front course outbound, set the front course on the OBS and depress the reverse course (REV) button. The HDG annunciation will flash for five seconds then extinguish. While the HDG annunciation is flashing, move the heading bug to the front course 058°. Since HDG was active upon selection of REV the autopilot will initiate a 45° intercept to the localizer signal. In this case, the aircraft will turn to 283°.

2. When the computed capture point is reached, auto intercept mode is cancelled and reverse localizer mode is automatically activated and a left turn outbound on the localizer is initiated by the autopilot.

Note: The left-right deviations of the CDI course deviation needle are reversed (you must turn right to center a deviation of the index to the left). This needle reversing takes place because you are flying outbound on a front course.
3. At the desired point, HDG mode is used to initiate the procedure turn. Select HDG and set the heading bug to 283°. During the procedure turn outbound, the CDI course index goes off scale to the right. The aircraft is flying away from the localizer centerline at a 45° angle on a selected heading of 283°.

* Check the heading displayed on the DG against the magnetic compass and reset if necessary.

4. Now you have reset the heading bug to 103° and made a 180° turn to this heading. This 103° heading will intercept the front course of 058°. You must now select the approach mode by depressing the APR button on the KAP 140.

* The HDG annunciation will flash for five seconds then extinguish. While the HDG annunciator is flashing, move the heading bug to the front course 058°. Since the 45° intercept is 103°, the aircraft will not turn until the front course is captured.
1. Continuing the maneuver on page 96, APR coupling occurs (HDG annunciation changes to APR), and the glideslope mode is automatically armed. The autopilot will capture the localizer and the CDI course index will center.

2. The autopilot is following the localizer. At the outer marker, the glideslope deviation needle is at midscale. Altitude hold is automatically disengaged when the glideslope is captured. The ALT annunciator extinguishes and GS is displayed. The autopilot will make pitch and bank changes as necessary to maintain localizer and glideslope.
3. At the middle marker, the pilot disengages the autopilot with the button on the control wheel. This cancels all operating modes. The flashing AP annunciations are displayed and a disconnect tone will sound.

4. The pilot initiates the missed approach and stabilizes the aircraft in the climb. The heading bug is set to the missed approach heading of 090°. By depressing the HDG button on the KAP 140, the autopilot engages into the heading and vertical speed modes, commencing a right turn to a heading of 090° and maintaining the rate of climb existing at engagement.

Note: Press and hold the AP button for 0.25 seconds to engage the autopilot (applicable only to software version 03/01 and later).
1. The aircraft is in APR mode approaching the IAF. Approach arm is indicated on the GPS annunciator.*

2. Upon waypoint alerting at the IAF, the heading bug is set to 238°, the GPS’s Leg/OBS mode switching is set to OBS mode and the OBS is set to 238°. The autopilot initiates a left turn to track the 238° GPS course.

* Description of GPS operation based on Bendix/King GPS receiver. Others may require different operation.
3. At the desired point, heading mode is used to initiate the procedure turn. During the procedure turn outbound, the deviation bar shows that the aircraft is flying away from the GPS course at a 45° angle on a selected heading of 283°.

* Check the heading displayed on the DG against the magnetic compass and reset if necessary.

4. The heading bug has been set to 103° and the aircraft has made a left turn to this heading. The GPS’s Leg/OBS mode switching is set to Leg mode and the OBS is set to 058°. Select approach mode by depressing the APR button.

* The HDG annunciation will flash for five seconds then extinguish. While the HDG annunciation is flashing, move the heading bug to 058°. Since the 45° intercept is 103°, the aircraft will not turn until the course is captured.
Inbound on GPS Approach Using DG

1. Continuing the maneuver on page 104, APR mode capture occurs. The autopilot initiates a left turn to track the 058° GPS course. * Approach active is indicated on the GPS annunciator.

2. At the FAF, ALT is depressed to activate vertical speed mode. The desired descent rate is obtained using the DN button. Remember, speed needs to be controlled with the throttle.

* Description of GPS operation based on Bendix/King GPS receiver. Others may require different operation.
3. At the MDA, the **ALT** button is depressed causing the autopilot to level off and maintain a constant altitude. At the MAP the pilot disengages the autopilot with the button on the control wheel. A flashing **AP** annunciation is displayed and a distinctive tone will sound.

4. The pilot initiates the missed approach and stabilizes the aircraft in the climb. The heading bug is set to the missed approach heading of 090°. By depressing the **HDG** button on the KAP 140, the autopilot engages into the heading and vertical speed modes, commencing a right turn to a heading of 090° and maintaining the rate of climb existing at engagement.

*Note: Press and hold the **AP** button for 0.25 seconds to engage the autopilot (applicable only to software version 03/01 and later).*
Abnormal Procedures

Autopilot Malfunction

An autopilot, autopilot trim or manual electric trim malfunction may be recognized as an uncommanded deviation in the airplane flight path or when there is abnormal control wheel or trim wheel motion. The primary concern in reacting to an autopilot or trim malfunction, or to an automatic disconnect of the autopilot, is in maintaining control of the airplane. Immediately grasp the control wheel and press and hold down the A/P DISC/TRIM INTER switch throughout the recovery. Manipulate the controls as required to safely maintain operation of the airplane within all of its operating limitations.

CAUTION: Refer to the Airplane Flight Manual or the Airplane Flight Manual Supplement for your particular aircraft for pertinent emergency procedures.